Министерство образования и науки Пермского края Государственное бюджетное образовательное учреждение «Академия первых»

ПРИНЯТА

педагогическим советом ГБОУ «Академия первых»

Протокол от 26.04.2023 № 3

СОГЛАСОВАНО

на заседании экспертного совета ГБОУ «Академия первых» Протокол от 20.12.2022 № 6

УТВЕРЖДЕНА приказом директора ГБОУ «Академия первых» от 02.05.2023 № 129

Трясцина Ю.В.

Μ.П.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Соревновательная робототехника (Конструкторы Lego EV3)»

Возраст обучающихся: 11-14 лет

Срок реализации программы: 36 часов

Составитель программы: Онянова Анастасия Леонидовна педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Направленность (профиль) программы: настоящая программа «Соревновательная робототехника (Конструкторы Lego EV3)» является дополнительной общеразвивающей программой научно-технической направленности, относящейся к продвинутому уровню реализации.

Актуальность программы: программа «Соревновательная робототехника (Конструкторы Lego EV3)» на основе платформы LEGO MINDSTORMS Education EV3 с использованием авторской программы Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий «Курс программирования робота EV3 в среде Lego Mindstorms EV3».

Данная программа предполагает участие детей средних классов и детей с начальным уровнем понимания таких направлений как: математика, информатика. Одна из задач возлагаемая на программу — это популяризация робототехнических соревнований как элемент привлечения школьников в инженерные профессии.

Современные реалии таковы, что большинство отраслевых направлений сегодня автоматизируются и для них повышается планка создающего и обслуживающего их персонала. Всё это напрямую связано с развитием сетей связи, электроники, робототехники. Уже сегодня существует огромный спрос на специалистов этих направлений.

На занятиях по данной программе, дети будут знакомится с типовыми задачами и учиться их закрывать различными способами. Кроме стандартных и прогнозируемых решений программа предполагает нетипового подхода к поиску решения. Функциональные конструкторы позволяют сочетать при обучении движения мелкой моторики пальцев рук и умственную деятельность предполагающую моделирование процессов в пространстве и времени. Что благотворно сказывается на памяти, расширении технического моделирования «в цме», отлаженное построение цепочек причинно-следственных связей.

Адресат программы: программа предназначена для детей 11-14 лет.

Срок реализации программы: 36 академических часа.

Формы обучения: настоящая программа предполагает очное обучение. Состав объединения обучающихся (группы) — 15-20 человек.

1. ЦЕЛЬ РЕАЛИЗАЦИИ ПРОГРАММЫ

Настоящая дополнительная общеразвивающая программа является многоцелевой, среди наиболее важных целей выделяются:

Мотивационная — показать, что инженерный труд - это всегда интересные и решаемые задачи. Что построение простых и сложных систем — это доступно каждому, кто готов учиться.

Профориентационная — связать современные технические направления с другими областями, демонстрируя важность технического творчества данной направленности.

Образовательная — создать среду для формирования углубленных знаний в области точных и естественных наук. Формирование в школьниках способности самостоятельно углубляться в базовых дисциплинах, подкрепляя тем самым интерес и к общему образовательному процессу.

2. ЗАДАЧИ РЕАЛИЗАЦИИ ПРОГРАММЫ

2.1. Образовательные задачи:

- конструирование.
- программирование.
- освоение методов математической логики.
- изучение законов физики и математики.
- знакомство с основами алгоритмизации

2.2. Развивающие задачи:

- формирование пространственного восприятия и памяти школьника;
- умение переводить сложные задачи в формат простых

2.3. Воспитательные задачи:

- формирование высоконравственных ориентиров у школьников
- повышение навыков самодисциплины и взаимоуважения

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

В результате освоения дополнительной общеразвивающей программы обучающийся должен знать:

- 1. основные понятия робототехники,
- 2. основные технические термины, связанные с процессами конструирования и программирования роботов;
 - 3. правила и меры безопасности при работе с электроинструментами;
 - 4. общее устройство и принципы действия роботов;
 - 5. общую методику расчета основных кинематических схем;
 - 6. методику проверки работоспособности отдельных узлов и деталей;
- 7. принципы определения границ линий разного типа и разной тональности;
- 8. понимание как определять цвет заданной поверхности и реагировать должным образом на заданный цвет;
- 9. определять перемещаемый объект, и знать, как его можно транспортировать.
 - 10. построение логических цепочек различных действий.

В результате освоения дополнительной общеразвивающей программы обучающийся должен **уметь:**

- 1. собирать модели с использованием EV3;
- 2. самостоятельно проектировать и собирать из готовых деталей манипуляторы и роботов различного назначения;
- 3. использовать для программирования микрокомпьютер EV3, программировать на дисплее;

- 4. владеть основными навыками работы в визуальной среде программирования, программировать собранные конструкции под задачи начального и среднего уровня сложности;
- 5. разрабатывать и записывать в визуальной среде программирования типовые программы управления роботом;
- 6. подбирать необходимые датчики и исполнительные устройства, собирать простейшие устройства с одним или несколькими датчиками, собирать и отлаживать конструкции базовых роботов;
- 7. правильно выбирать вид передачи механического воздействия для различных технических ситуаций, собирать действующие модели роботов, а также их основные узлы и системы;
- 8. понимать, как взаимодействует робот с внешней средой и реагирует на ключевые факторы: цветная метка, линия, переносимый предмет;
- 9. возможность управлять роботом через сторонние признаки учтенные в программе разработчиком.

Способы определения результативности:

- •Участие в процессе созидания проектов и местный контроль со стороны педагога.
- •Анализ результатов и поставленных задач совместно ученика с педагогом.
 - •Выполнение тестового промежуточного и итогового заданий.
 - •Ведение журнала учета.

Для реализации программы используются образовательные конструкторы фирмы Lego, конструктор LEGO MINDSTORMS Education EV3. Он представляет собой набор конструктивных деталей, позволяющих собрать многочисленные варианты механизмов, набор датчиков, двигатели и микрокомпьютер EV3, который управляет всей построенной конструкцией. В конструкторе LEGO MINDSTORMS Education EV3 есть необходимое

программное обеспечение. LEGO EV3 обеспечивает простоту при сборке начальных моделей, что позволяет ученикам получить результат в пределах одного занятия. И при этом возможности в изменении моделей и программ — очень широкие, и такой подход позволяет учащимся усложнять модель и программу, проявлять самостоятельность в изучении темы. Также используются специализированные поля и дополнения позволяющие сформировать особые условия для поведения и созданных роботов, используемых в соревнованиях

4. СОДЕРЖАНИЕ ПРОГРАММЫ УЧЕБНЫЙ ПЛАН

ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

«Соревновательная робототехника (Конструкторы Lego EV3)»

$N_{\underline{0}}$	Название раздела,	Количество часов		насов	Форма аттестации / кон-	
	темы	Всего	Теория	Практика	троля	
1	Движение по прямой линии разной расциветки и разного типа. Прохождение перекрёстков.	8	2	6	Выполнение тестового задания	
2	Работа с датчиками. Обнаружение и пре- одоление препятствий и разного типа.	8	2	6	Выполнение тестового задания	
3	Распознавание раз- личных цветовых ме- ток и формирование реакции на них робо- том.	8	2	6	Выполнение тестового задания	
4	Обнаружение необходимых предметов. Загрузка, транспортировка и выгрузка предметов.	8	2	6	Выполнение тестового задания	
5	Проведение промежуточного и итогового контроля.	4	0	4	Выполнение тестового задания	
	Итого	36	8	28		

СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА

Тема 1. Движение по прямой линии разной расцветки и разного типа. Прохождение перекрёстков. (8 ч.)

<u>Теория:</u> Режимы работы датчика освещенности. Алгоритмы движения робота по 1 датчику цвета (по переключателю). Изучение блока математика. Алгоритм движения по 2м датчикам. Релейный регулятор. Обнаружение перекрестка.

<u>Практика:</u> Сборка конструкции для скоростного передвижения по траектории. Разработка несколько различных видов мобильных роботов. Установка и подключение датчиков освещённости. Составление программы для движения по линии на скорость. Поворот на различных перекрестках.

Тема 2. Работа с датчиками. Обнаружение и преодоление препятствий и разного типа. (8 ч.)

<u>Теория:</u> Пропорциональный регулятор. Программирование микроконтроллерных платформ в Lego EV3-G: структура программы, получение и обработка данных с датчиков, методика регулирования прямолинейного движения через препятствия.

<u>Практика:</u> Разработка несколько различных видов мобильных роботов. Проезд по траектории чрез препятствия заезд на горку и съезд с нее.

Тема 3. Распознавание различных цветовых меток и формирование реакции на них роботом. (8 ч.)

<u>Теория:</u> Программирование датчика освещенности в режиме «цвет». Ветвление. Программирование микроконтроллерных платформ в Lego EV3-G: структура программы, получение и обработка данных с датчиков, методика регулирования прямолинейного. Гироскопический датчик. Различные углы поворота.

<u>Практика:</u> Разработка алгоритма движения по линии с изменением движения в зависимости от цвета метки.

Тема 4. Обнаружение необходимых предметов. Загрузка, транспортировка и выгрузка предметов. (8 ч.)

<u>Теория:</u> Программирование работы ультразвукового датчика. Исследование возможностей ультразвукового датчика по обнаружению различных объектов. Определение цвета объекта. Использование датчиков ультразвука и освещённости для контроля над действиями робота. Механизмы захвата различных объектов.

<u>Практика:</u> Движение по линии. Захват кубических и цилиндрических объектов. Перемещение объектов. Сортировка объектов в зависимости от цвета.

Раздел **5.** Проведение промежуточного и итогового контроля (**4** ч.) <u>Теория:</u>

<u>Практика:</u> Проезд заданной траектории по цветным меткам, с преодолением препятствий. Соревнования «Траектория-квест»

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

(УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН)

ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

«Соревновательная робототехника (Конструкторы Lego EV3)»

№ п/п	Месяц	Число	Время проведения занятия	Форма занятия	Кол-во часов	Тема занятия	Место проведения	Форма контроля
1.	время	-	ата и аются пре- журнале		8 в том числе:	Движение по прямой линии разной расцветки и разного типа. Прохождение перекрёстков.	Аудитория	Выполнение тестового задания
1.1.				Лекция	2	Распознавание линий и их границ, работа с датчиком освещенности и реализация алгоритмов.	Аудитория	
1.2.				Практика	2	Управление скоростью движения платформы. Задание ручного и автоматического управления скоростью. Автопоиск линии и переключение с одной линии на другую.	Аудитория	Выполнение те- стового задания
1.3.				Практика	2	Выявление перекрестков и отражение их в памяти. Проверка и настройка датчиков при разном пороге освещенности и правильная настройка.	Аудитория	Выполнение тестового задания
1.4.				Практика	2	Создание модуля собственного движения по прямой	Аудитория	Выполнение тестового задания

2.	Конкретная дата и время указываются преподава- телем в журнале		8 в том числе:	Работа с датчиками. Обнаружение и преодоление пре- пятствий разного типа.	Аудитория	Выполнение тестового задания
2.1		Лекция	2	Разбор принципов работы ультразву- ковых датчиков и варианты их ис- пользования. Опрос датчиков и реак- ция на него. Написание калибровоч- ной программы.	Аудитория	
2.2		Практика	2	Прохождение поворотов разного угла. Управление скоростью в зависимости от поворота.	Аудитория	Выполнение те- стового задания
2.3		Практика	2	Программирование платформы на движение по прямой разной сложности (повороты. Разная тональность, прерывистость)	Аудитория	Выполнение те- стового задания
2.4		Практика	2	Создание платформы способной преодолевать различные препятствия. Преодоление простого барьера типа балка без искажения траектории движения.	Аудитория	Выполнение те- стового задания
3	Конкретная дата и время указываются преподавате- лем в журнале		8 в том числе:	Распознавание различных цве- товых меток и формирование реакции на них роботом	Аудитория	Выполнение те- стового задания
3.1		Лекция	2	Что такое цвет. Как он формируется. Принцип работы датчика и использование его работы. Методы определения цвета. Основные принципы ветвления алгоритмов. Использование цветовых	Аудитория	

				меток для ветвлений программы		
3.2		Практика	2	Настройка и программирование датчика. Снятие показаний с него. Построение простых алгоритмов с использованием датчика цвета.	Аудитория	Выполнение те- стового задания
3.3		Практика	2	Практическая отработка простых связок в структуре нелинейного алгоритма. Отработка простых действий с реакцией на датчик цвета	Аудитория	Выполнение те- стового задания
3.4		Практика	2	Программирования роботов на сложные алгоритмы с использованием различных внешних ключевых факторов. Траектории и движений по поиску различных цветовых меток.	Аудитория	Выполнение те- стового задания
4	Конкретная дата и время указываются преподавате- лем в журнале		8 в том числе:	Обнаружение необходимых предметов. Загрузка, гранспортировка и выгрузка предметов.	Аудитория	Выполнение те- стового задания
4.1		Лекция	2	Эхолокация в природе и обзор принципов работы ультразвукового датчика. Погрузка и выгрузка одного предмета, нескольких предметов. Запоминание последовательности загрузки.	Аудитория	

4.2		Практика	2	Проверка и настройка датчика. Калибровка датчика. Использование датчика в алгоритмах простых и сложных програм.	Аудитория	
4.3		Практика	2	Обнаружение предмета и способы взаимодействия с ними. Захват предметов. Захват предметов разной формы. Захват предметов разного количества и в заданной последовательности	Аудитория	Выполнение те- стового задания
4.4		Практика	2	Погрузка и транспортировка одного и нескольких предметов. Простая выгрузка предметов, Выгрузка предметов по условию.	Аудитория	Выполнение те- стового задания
5	Конкретная дата и время указываются преподава- телем в журнале		4 в том числе:	Проведение промежуточного и итогового контроля	Аудитория	Выполнение те- стового задания
5.1		Практика	2	Построение платформы под сложные алгоритмические задачи и её программирование	Аудитория	Выполнение те- стового задания
5.2		Практика	2	Построение платформы под сложные алгоритмические задачи и её программирование	Аудитория	Выполнение те- стового задания

5. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ (ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ)

5.1. Материально-технические условия реализации программы

Наименование специа- лизированных аудиторий, кабинетов, лабораторий	Вид занятий	Оборудование, программное обеспечение
Аудитория	Лекция	Компьютер, мультимедийный проектор, экран, доска
Аудитория	Практическая работа, тестирование	Компьютер – по 1 на учащегося, мультимедийный проектор, экран, доска, набор Лего EV3 – по 1 на учащегося, соревновательные поля. Программное обеспечение: Mindstorms EV3 1.3.1

Помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации.

5.2. Учебно-методическое обеспечение программы

Образовательная программа содержит теоретическую и практическую подготовку, большее количество времени уделяется практической деятельности.

Кроме традиционных методов используются эвристический метод; исследовательский метод, самостоятельная работа; диалог и дискуссия; приемы дифференцированного обучения, обеспечивающие обучение каждого обучающегося на уровне его возможностей и способностей.

Для реализации настоящей программы используются основные методы работы — развивающего обучения (проблемный, поисковый, творческий), дифференцированного обучения (уровневые, индивидуальные задания, вариативность основного модуля программы), игровые.

Занятия проводит педагог, имеющий высшее педагогическое образование. Программа составлена с учетом санитарно-гигиенических

требований к порядку проведения занятий и адаптирована к возрастным особенностям обучающихся.

СПИСОК ИСПОЛЬЗОВАННОЙ И РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Использована литература:

- 1. Овсяницкая, Л.Ю. Курс программирования робота Lego Mindstorms EV3 в среде EV3: изд. второе, перераб. и допол. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: «Перо», 2016. 296 с.;
- 2. Копосов Д. Г. Первый шаг в робототехнику. Практикум для 5-6 классов\Д. Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2012 292 с.
- 3. Блог-сообщество любителей роботов Лего с примерами программ http://nnxt.blogspot.ru/2010/11/blog-post_21.html
- 4. Лабораторные практикумы по программированию http://www.edu.holit.ua/index.php?option=com_content&view=category&layout=blog&id=72&Itemid=159&lang=ru
- 5. Образовательная программа «Введение в конструирование роботов» и графический язык программирования роботов http://learning.9151394.ru/course/view.php?id=280#program_blocks
- 6. Примеры конструкторов и программ к ним http://www.nxtprograms.com/index2.html
- 7. Программы для робота http://service.lego.com/en-us/helptopics/?questionid=2655
 - 8. Учебник по программированию роботов (wiki)
 - 9. Материалы сайтов

http://www.prorobot.ru/lego.php

http://www.239.ru/robot

http://www.russianrobotics.ru/actions/actions_92.html

http://habrahabr.ru/company/innopolis_university/blog/210906/STEM-pобото-

техника

http://www.slideshare.net/odezia/2014-

39493928http://www.slideshare.net/odezia/ss-40220681

http://www.slideshare.net/odezia/180914-39396539

https://www.lego.com/ru-ru/mindstorms/fan-robots

http://4pda.ru/forum/index.php?showtopic=502272&st=20

http://www.proghouse.ru/tags/ev3-instructions

https://kopilkaurokov.ru/informatika/planirovanie/rabochaia_proghramma_kruz

hka_robototiekhnika

Приложение 1.

Вступительное тестирование.

1. Что такое робот?

Автоматическое устройство, предназначенное для осуществления различного рода механических операций, которое действует по заранее заложенной программе.

2. Что такое число π ?

Математическая константа, которая выражает отношение длины окружности к длине ее диаметра.

3. Что такое радиан?

Радиа́н (от лат. radius — луч, радиус) — угол, соответствующий дуге, длина которой равна её радиусу.

Задача	Варианты ответов	Правильный
		ответ
1. Где хранится про-	В компьютере разработчика.	В блоке
грамма у робота?	В голове программиста.	управления.
	В блоке управления.	
2. Что делают испол-	Исполняют желания робота.	Исполняют
нительные механизмы	Исполняют волю владельца.	команды, зало-
робота?	Исполняют команды, зало-	женные в алго-
	женные в алгоритме.	ритме.

3. По какой траекто-	Прямолинейно.	Прямоли-
рии может двигаться	Криволинейно.	нейно.
колесный робот?	Кривокосо.	Криволи-
		нейно.
4. В каком году осно-	2010	1932
вана компания «Лего»?	1932	
	2042	
	1980	
5. Найти среднее	78, 26, 39, 45	39
арифметическое чисел		
52 и 26.		
6. Формула пути.	V = S/t	S = V*t
	S = V*t	
	t = S/V	
7. Формула длины	S = a * b	$C = \pi^*D$
окружности.	$C = \pi * R$	
	$C = \pi * D$	
8. Сколько градусов	90, 180, 360, 270	360
в окружности?		
9. Вычислить в уме	10, 15, 20	20
$20-10:2+5:2 \times 2$		

Приложение 2.

Примерные темы проектов. Критерии оценки проектов.

Примерные темы проектов:

- 1. Спроектируйте и постройте автономного робота, который движется по правильному многоугольнику и измеряет расстояние и скорость.
- 2. Спроектируйте и постройте автономного робота, который может передвигаться:
 - на расстояние 1 м;
 - используя хотя бы один мотор;
 - используя для передвижения колеса;
 - а также может отображать на экране пройденное им расстояние.
- 3. Спроектируйте и постройте автономного робота, который может перемещаться и:
 - вычислять среднюю скорость;
 - может отображать на экране свою среднюю скорость.
- 4. Спроектируйте и постройте автономного робота, который может передвигаться:
 - на расстояние не менее 30 см;
 - используя хотя бы один мотор;
 - не используя для передвижения колеса.
- 5. Спроектируйте, постройте и запрограммируйте робота, который может двигаться вверх по как можно более крутому уклону.
- 6. Спроектируйте, постройте и запрограммируйте робота, который может передвигаться по траектории, которая образует повторяемую геометрическую фигуру (например: треугольник или квадрат).
- 7. Спроектируйте и постройте более умного робота, который реагирует на окружающую обстановку. Запрограммируйте его для использования датчиков цвета, касания, и ультразвукового датчика для восприятия различных данных.

- 8. Спроектируйте, постройте и запрограммируйте роботизированное существо, которое может воспринимать окружающую среду и реагировать следующим образом:
 - издавать звук;
 - или отображать что-либо на экране модуля EV3.
- 9. Спроектируйте, постройте и запрограммируйте роботизированное существо, которое может:
 - чувствовать окружающую обстановку;
 - реагировать движением.
- 10. Спроектируйте, постройте и запрограммируйте роботизированное существо, которое может:
 - воспринимать условия света и темноты в окружающей обстановке;
 - реагировать на каждое условие различным поведением.

Презентация группового проекта

Процесс выполнения итоговой работы завершается процедурой презентации действующего робота.

Презентация сопровождается демонстрацией действующей модели робота и представляет собой устное сообщение (на 5-7 мин.), включающее в себя следующую информацию:

- тема и обоснование актуальности проекта;
- цель и задачи проектирования;
- этапы и краткая характеристика проектной деятельности на каждом из этапов.

Оценивание выпускной работы осуществляется по результатам презентации робота на основе определенных критериев.